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Localization length of stationary states in the nonlinear Schrodinger equation
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For the nonlinear Schrédinger equation (NLSE), in the presence of disorder, exponentially localized station-
ary states are found. We demonstrate analytically that the localization length is typically independent of the
strength of the nonlinearity and is identical to the one found for the corresponding linear equation. The analysis
makes use of the correspondence between the stationary NLSE and the Langevin equation as well as of the
resulting Fokker-Planck equation. The calculations are performed for the “white noise” random potential, and
an exact expression for the exponential growth of the eigenstates is obtained analytically. It is argued that the

main conclusions are robust.
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In this work we consider a simple problem of the one-
dimensional Anderson localization [1,2] for the nonlinear
Schrédinger equation (NLSE) [3-5]. This problem is rel-
evant to experiments in nonlinear optics—for example, dis-
ordered photonic lattices [6], where Anderson localization
was found in the presence of nonlinear effects as well as
experiments on Bose-Einstein condensates (BECs) in disor-
dered optical lattices [7-11]. The interplay between disorder
and nonlinear effects leads to new interesting physics
[8,9,12—15]. In particular, the problems of spreading of wave
packets and transmission are not simply related [16,17], in
contrast with the linear case. In spite of extensive research,
many fundamental problems are still open, and in particular,
it is not clear whether in one dimension (1D) Anderson lo-
calization can survive the effects of nonlinearities.

Herein we consider 1D localization of stationary solutions
of the NLSE in a random potential. The problem is described
by the equation

idh=— i+ Bl g+ V(x) g, (1)

where V(x) is a random S-correlated potential with a Gauss-
ian distribution, of zero mean and variance o2, such that

(V) V(") =207 8x = x"), 2)

where (- --) denotes the average over realizations of the ran-
dom potential. The variables are chosen in dimensionless
units, and the Planck constant is #=1. For the linear case
(B=0) this model was studied extensively in the past [18,19].
The problem in question is Anderson localization of station-
ary solutions of Eq. (1) with energies w:

ihlx,1) = exp(= iwt) (), 3)

where ¢(x) is real. Substituting Eq. (3) into Eq. (1) one ob-
tains the stationary NLSE

wd(x) = = Fp(x) + B (x) + V(x) p(x). (4)

It was established rigorously [3,20,21] that this equation has
exponentially localized solutions of this type for a wide
range of conditions. It is instructive to notice that also in the
absence of disorder (V=0) the nonlinear equation exhibits
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stationary localized states, and these are not simply related to
the localized states in presence of disorder [13,14,22]. The
purpose of the present work is to find the localization length
of these states. It will turn out that the localization length is
typically not affected by the nonlinearity and is identical to
the one of the linear problem (8=0). The approach of Bor-
land and others [23,24] will be the basis of our analysis. This
approach is reviewed clearly in detail in [25] and made rig-
orous in [26].

We will specifically calculate (¢*(x)) of solutions of Eq.
(4) that are found for a certain w, with given boundary con-
ditions at some point—for example, ¢(x=0) and ¢’ (x=0),
where a prime means the derivative with respect to x. It will
be shown that this quantity grows exponentially with the rate

2y=lim

X—00

2
@w, §=17, (5)

which is independent of 3, where ¢ is the localization length.

Note that it is different from the usually studied self-
In ¢*(x)
averaging quantity %:%d—’i((ln d)z(x)):%limx_m—. We

X
will find that vy is a smooth function of energy. Since the
distribution of random potentials is translationally invariant,
it is independent of the choice of the initial point as x=0.
Like in the linear case, starting from a specific initial condi-
tion, ¢(x) will typically grow. For specific values of w at
some point this function will start to decay, so that a normal-
ized eigenfunction is found [23-26]. The envelope of the
wave function will grow exponentially if we start either from
the right or from the left. The value of w results from the
matching condition, so that an eigenfunction has some maxi-
mum and decays in both directions as required by the nor-
malization condition. The exponential decay is an asymptotic
property, while the matching is determined by the potential
in the vicinity of the maximum. This observation [25,26] is
crucial for the validity of this approach and enables us to
determine the exponential decay rate of states from the solu-
tion of the initial value problem (4). For the linear case these
values of w form the point spectrum of the problem that is
the entire spectrum of the linear problem. This approach can
be followed also for the nonlinear problem, but contrary to
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the linear case, these stationary states do not provide a com-
plete picture of the dynamics. Let us fix w, the stationary
states in the vicinity of w will on the average (over realiza-
tions) decay with the localization length £ defined by Eq. (5).
As mentioned, it will be found to be independent of S, lead-
ing to the conclusion that this is a typical property of the
localized eigenstates of Eq. (4).

The calculation of (¢*(x)) will be performed by the anal-
ogy with the classical Langevin equation [18,19]. Therefore,
here we are considering the x coordinate as the formal time
on the half axis x=7€[0,»), and Eq. (4) reduces to the
Langevin equation

b+ wp— B’ - V(np=0, (6)

with the &-correlated Gaussian noise V(7). Now we introduce
new variables u=¢ and v= = djé and a distribution function
of these variables is P=P(u,v, 7). The dynamical process in
the presence of the Gaussian S-correlated noise is described
by the distribution function that satisfies the Fokker-Planck

equation (FPE) (see, e.g., [27,28]):
0.P - [wu - Bu*ld,P +vd,P — ?u>IP =0. (7)

It is obtained from the Langevin equation (6), as can be seen
in [27,28], and is consistent with [19] Eq. (6.14) there [29].

We are interested in the average quantum probability den-
sity (¢?(x)) = (u*(7)), where

(U (7)) = f w*P(u,v, Ddu dv.

It is useful to obtain from the FPE a system of equations for
the moments

My, = '), (8)

where k,1=0,1,2,.... Substituting «*v’ into the FPE and in-
tegrating over u and v, one obtains the following relation for
Mk,l:

My == loMy o+ kMg o + 100 1)0* My, o
+BIMyi3, )

where M, ; with negative indices are assumed to vanish. We
note that only terms with the same parity of k+/ are coupled.
Since we are interested in M2,0=<u2>, we study only the case
when this parity is even—namely, k+/=2n with n=1,2,....
The sum of the indices of the moments is 2n, except the last
term BIM;,5, 1, where the sum is 2(n+1). This leads to an
infinite system of linear equations that can be written in the
form

M=WM, (10)

where M=(M, o, M, ,My>,M;0,M3;,...) and W is the
corresponding matrix. The matrix elements W, ; are deter-
mined by Eq. (9). The solutions of the system of linear Egs.
(10) are linear combinations of the eigenfunctions
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M,(1) = exp(NT) M, (0), (11)

where M,(0) is the eigenvector of W corresponding to .
The growth rate of each moment, in particular M, o=(u?), is
determined by the eigenvalue with the largest real part Re \.

For £=0, Eq. (9) [or (10)] has a closed form for each n.
Therefore, the infinite matrix »V is block diagonal and con-
sists of the independent blocks A,=A,[(2n+1)X (2n+1)],
and the characteristic polynomial reduces to a product of
their determinants:

[1 det(a, - n1,) =0, (12)
n=1

where I, is a (2n+1) X (2n+1) unit matrix. The problem of
localization in the framework of Eq. (9) reduces to n=1. The
relevant characteristic polynomial det(A;—\/;) reduces to a
cubic equation

N +4on-467=0. (13)
Cardano’s method yields [30]

R,+R.  ~R.-R_
)\2,3:— +2 il\3 +2 N (14)

N =R, +R_,

where Ri=[20'21 Vaot+ %‘7"3]1/3. The growth rate is deter-
mined by the eigenvalue with largest real part, which will be
denoted by A,,. We conclude that asymptotically for large x
the averaged wave function indeed grows exponentially as
(¢*(x)) ~e?» and 2y=\,,. Also the behavior of the higher
blocks can be calculated. From the nth block the behavior of
the moment (¢*"(x)) can be found. In the high-energy limit
one finds from Eq. (14)

0,2
)\m = )\l =,
w

w— +0%, (15)

—_—

A =Re Ny =2V|w

, w— —0, (16)

These limits can be found directly from Eq. (13). The solu-
tions should be compared with the high-energy asymptotics
obtained in Ref. [19] [Eq. (10.12), p. 143], where 7y,
=0’/4w and y,=\|w| in the limits w— +% and w— -,
respectively. Note that Eq. (14) gives a simple expression for
v for all values of the parameters, while the expression for 7,
is known only in the large-w limit. Since vy and 7, result in
different averages, these are not expected to be identical.

Now, let us consider localization for S+ 0. The eigen-
value equation

W(B)M)\(,B) = )\(ﬂ)Mx(ﬁ) (17)

is obtained from Eq. (9), W is not block diagonal anymore.
The B dependence results from the last term in Eq. (9). The
B-dependent terms couple the nth block and (n+ 1)th block
and are located above the (n+ 1)th block and to the right of
the nth block. Consequently, the S-dependent terms do not
affect the characteristic polynomial, as can be shown by el-
ementary operations on determinants. It reduces to the one
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found for B=0—namely, Eq. (12). Therefore, the growth
rates of all moments of ¢(x) do not depend on B and their
values are equal to the ones of the linear problem for 8=0.
This is correct in particular for \,,; consequently, y of Eq. (5)
is identical to the value found in the linear case (8=0).

We demonstrated that in the presence of a random poten-
tial the stationary states of the NLSE are exponentially local-
ized with a localization length that is found in the absence of
nonlinearity. This is in agreement with a heuristic argument
that the effect of nonlinearity is negligible when the wave
function is small. We believe that the approach of Borland
and others can be extended to a rigorous treatment of the
stationary states of the NLSE. Since this equation is nonlin-
ear, the stationary states do not provide a complete or even
essential description of the dynamics, starting from a given
initial condition. The status of stability of these states with
respect to small perturbations is not clear. The relation to the
transmission problem is not obvious. Our results are consis-
tent with the limit of vanishing flux in the transmission prob-
lem [31].

Another question that should be discussed is of the gen-
erality of the results. Assume that the power of i in Eq. (1)
differs from 3. Only the last term in Eq. (9) will be affected,
resulting in a different coupling between the blocks of the
matrix VY. But since these couplings are above the diagonal
of the block-diagonal matrix, they will not affect our conclu-
sion that the characteristic polynomial which determines \ is
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not affected by the nonlinearity. If the potential V(x) deviates
from a white noise one, Kramers-Moyal coefficients [27] that
are higher than the second one appear. But if no convergence
problems of the Kramers-Moyal expansion are encountered,
an equation like Eq. (7) with higher powers of u and v,
combined with higher-order derivatives is obtained. Because
of the structure of the Kramers-Moyal expansion, the block-
diagonal form of the matrix )V in the absence of nonlinearity
is expected to be unaffected by this deviation from white
noise. Therefore we expect the main result of the work—
namely, the independence of the localization length of the
nonlinearity—to exhibit some degree of robustness and to
hold for a wide range of models beyond the specific model
that is studied in detail in the present work. All these prob-
lems should be the subject of further studies.
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